A Generic Framework for Efficient and Effective Subsequence Retrieval

Haohan Zhu¹, George Kollios¹, Vassilis Athitsos²

1. Boston University

2. University of Texas at Arlington

Generic Framework for Sequences

- Time-series and String Databases
 - Songs, Trajectories, Video, etc.
 - DNA, Proteins, Text, etc.

Subsequence Retrieval

Subsequence for both Query and Database

Similar Subsequences

- Sequences
 - Q:= $(q_1, q_2, q_3, ..., q_n)$ SQ:= $(q_i, q_{i+1}, q_{i+2}, ..., q_j)$
- Similar Subsequences (ε, λ)
 - δ(SX, SQ): Distance between subsequences SX and SQ
 - |SX|: Length of subsequence SX
 - $\delta(SX, SQ) \leq \epsilon$
 - $|SX| \ge \lambda$, $|SQ| \ge \lambda$
 - $||SQ| |SX|| \le \lambda_0$
 - λ₀ is to avoid distortion

Query Types

- I: Range Query (Too many results)
 - $|SX| \ge \lambda$, $|SQ| \ge \lambda$, $\delta(SX, SQ) \le \epsilon$ and $||SQ| |SX| | \le \lambda_0$
- II: Longest Similar Subsequences Query
 - Maximize: |SQ|
 - Subjects to: $|SX| \ge \lambda$, $\delta(SX, SQ) \le \epsilon$ and $||SQ| |SX| | \le \lambda_0$
- III: Nearest Neighbor Query
 - Minimize: $\varepsilon = \delta(SX, SQ)$
 - Subjects to: $|SX| \ge \lambda$, $|SQ| \ge \lambda$ and $||SQ| |SX| | \le \lambda_0$

Computing Similar Subsequences

- However in many cases computing distance of sequences is expensive
 - Dynamic programming
 - Edit Distance, DTW, Discrete Frechet distance, ERP, etc.
- O(m²n²) pairs of subsequences
 - m² subsequences SX from Sequence Database X
 - n² subsequences SQ from Query Sequence Q
- Reduce number of pairs need to be checked to O(mn).

Framework

- 1. Segment Database and Query Sequences
- 2. Range Query on Segments
 - lengths of segments are fixed or in a certain range
 - Only O(mn) pairs of segments
- 3. Generate Candidate Pairs of Similar Subsequences from Similar Segments
- 4. Validate Candidates (According to Query Type)

Consistency Property

- Guarantee every pair of similar subsequences must have a pair of similar segments.
- Definition: Let X and Q be two sequences, then for every subsequence SX of X, there exists a subsequence SQ of Q, such that δ(SQ, SX) ≤ δ(Q,X). Then δ is a consistent distance.
- Consistency property is for sequence measurements.

Consistency Property

Definition: For every subsequence SX of X, there exists a subsequence SQ of Q, such that δ(SQ, SX) ≤ δ(Q,X).

 DTW, Discrete Frechet Distance, ERP, Levenshtein distance, Euclidean Distance, Hamming Distance are all "consistent".

Segmentation

- Guarantee every similar subsequence must include a whole segment.
- Segmentation: Let sequence X be partitioned into windows of fixed length $I \le \lambda/2$. Let sequence Q be partitioned into windows of length in $[I-\lambda_0, I+\lambda_0]$

Similar Subsequence SX

Similar Segment SSX

Similar Segment SSQ

Similar Subsequence SQ

Generate Candidates

- Only if there exists similar segments, there may exist similar subsequences.
- If a similar subsequence has length larger than k*(λ/2), it has at least k-1 consecutive similar segments

Range Query on Segments

- Referenced-based Index
- Metric Distance
 - Since δ (Q₂, R) + ε < r₂, we can claim that all distances between Q₂ and every X_i are smaller than r₂.
 - Also because δ(Q₁, R) ε > r₁, we can claim that all distances between Q₁ and every X_i are larger than r₁.

Reference Net

Each node R(i, j) is a reference. The range of reference
R(i, j) is 2ⁱ

Query Method

- I: Range Query
 - Check all candidates from pairs of similar segments
- II: Longest Similar Subsequences Query
 - Find the longest consecutive sequence of similar segments
 - Check from the longest candidates
- III: Nearest Neighbor Query
 - Binary search minimal ε when there exists some similar segments
 - Check all candidates

- Datasets:
 - Protein
 - UniProt (100K total segments)
 - Songs
 - Songs Database (20K total segments)
 - Trajectories
 - Camera from Parking Lot (100K total segments)
- Distance Functions
 - Edit Distance (for Proteins)
 - Discrete Frechet Distance (for Songs and Trajectories)
 - ERP Distance (for Songs and Trajectories)

Space of Reference Net: O(n)

Query Computation Ratio (Distance Distribution)

Overall Subsequence Query Result

Conclusions & Future work

- A generic framework for subsequence matching.
- Defined a property for distance functions that allows efficient query processing and guarantees exact answers.
- Provided an index scheme that is generic for metric distances and fits well our framework.
- Future work:
 - Improve the performance of the query part using GPUs and/or cluster-based system.

Thanks

Reference Net

Net, not Tree

we show why it is important to have a multiparent hierarchy and not a tree. Assume δ(R₁,X_i) ≤ ε and δ(R₂,X_i) ≤ ε, but X_i are only in the list of R₂. If δ(Q,R₂) + ε > r we do not know whether δ(Q,X_i) ≤ r or not. However, if we maintain X_i also in R₁, and δ(Q,R₁) + ε ≤ r, we know

 $\delta(Q, X_i) \le r$

Reference Net

- 4 Pruning Rules:
 - Single list removal
 - Single list commit
 - Generated list removal
 - Generated list commit

Query Computation Ratio (Tree VS Net)

